loader
Please Wait
Applying Filters...

List of Contract Labs, CROs Offering Raloxifene Hydrochloride Analytical Method Development | Validation | BA/BE Studies using techniques like RP-HPLC, RP-UPLC, LC/MS, LC/MS/MS, GC/MS etc.

Menu
$ API Ref.Price (USD/KG) : 877Xls
Filters Filter
Cross PopUp
FILTER :

filter clear-filterReset all filters

01 3QUINTA-ANALYTICA s.r.o

filter clear-filterReset all filters

filter clear-filterReset all filters

filter clear-filterReset all filters

filter clear-filterReset all filters

PharmaCompass
Left Arrow
Right Arrow

What is Raloxifene Hydrochloride? A second generation selective estrogen receptor
modulator (SERM) used to prevent osteoporosis in postmenopausal women. It has estrogen agonist effects on bone and cholesterol metabolism but behaves as a complete estrogen antagonist on mammary gland and ut What is bioanalytical method development and validation? Bioanalytical Method Validation, the term validation means the action of checking or proving the validity or accuracy of something. (BMV) guidelines for Raloxifene Hydrochloride are applied to bioanalytical methods that are used for the quantitative determination of Raloxifene Hydrochloride and its metabolites in biological matrices such as plasma, urine and preclinical studies and also for bioanalytical method validation for small molecules. A compound can often be measured by several methods and the choice of analytical method involves many considerations. Analysis of drugs and their metabolites in a biological matrix is carried out using different extraction techniques like liquid-liquid extraction, solid phase extraction (SPE) and protein precipitation from these extraction methods samples are spiked with calibration (reference) standards and using quality control (QC) samples. These bioanalytical validations play a significant role in evaluation and interpretation of bioavailability, bioequivalence, pharmacokinetic, and toxicokinetic studies. In which different parameters like accuracy, precision, selectivity, sensitivity, reproducibility, and stability are performed. Bioanalytical Method Development & Validation Service providers CROs / CDMOs have vast experience in Validated methods for Active Pharmaceutical Ingredients (APIs) for a variety of platforms including HPLC( High Performance Liquid Chromatography), RP-HPLC (Reverse Phase- High Performance Liquid Chromatography), RP-UPLC (Reverse Phase- Ultra Performance Liquid Chromatography), LC/MS/MS, GC/MS or GC/FID, ICP/MS, and ligand binding assays (ELISA or other cell-based assays). As both an in vivo and analytical CRO, they support bioanalytical method development & validation services of a variety of Active Pharmaceutical Ingredients (APIs) / Drugs. Bioanalytical studies for Raloxifene Hydrochloride are typically conducted under GLPs, where product release and stability tests follow GMP quality requirements. Limit Of Quantification (LOQ) Lower limit of quantification The LLOQ is the lowest amount of an analyte in a sample that can be quantitatively determined with suitable precision and accuracy (bias). There are different approaches to the determination of LLOQ. LLOQ based on signal to noise ratio (S/N): This approach can only be applied if there is baseline noise, for example, to chromatographic methods. Signal and noise can then be defined as the height of the analyte peak (signal) and the amplitude between the highest and lowest point of the baseline (noise) in a certain area around the analyte peak. For the LLOQ values of Raloxifene Hydrochloride, S/N is usually required to be equal to or greater than 10. The estimation of baseline noise can be quite difficult for bioanalytical methods, if matrix peaks elute close to the analyte peak. Upper limit of quantification The upper limit of quantification (ULOQ) is the maximum analyte concentration of a sample that can be quantified with acceptable precision and accuracy (bias). In general, the ULOQ value of Raloxifene Hydrochloride is identical with the concentration of the highest calibration standard. Bioanalytical techniques used in Validation of Raloxifene Hydrochloride: Commonly used Bioanalytical chromatographic methods in bioanalytical studies for Raloxifene Hydrochloride are as follows: Hyphenated techniques: A hyphenated technique is combination or coupling of two different analytical techniques with the help of proper interface. Mainly chromatographic techniques are combined with spectroscopic techniques, For e.g. LC–MS (liquid chromatography–mass spectrometry); GC–MS (gas chromatography–mass spectrometry); CE–MS (capillary electrophoresis–mass spectrometry) Liquid Chromatography-Mass Spectrometry (LC-MS/MS or LC-MS-MS): Bioanalytical liquid chromatography-mass spectrometry or Bioanalytical Mass Spectrometry is a technique that uses liquid chromatography with the mass spectrometry. LC-MS or LC-MS-MS and rapid and sensitive high performance LC/MS/MS method is commonly used in laboratories for the quantitative and qualitative estimation of Raloxifene Hydrochloride and other drug products and biological samples. LC-MS has played an important role in evaluation and interpretation of bioavailability, bioequivalence and pharmacokinetic details of Raloxifene Hydrochloride. Through LC-MS biological samples are determined throughout all phases of method development of a Raloxifene Hydrochloride and its salts in research and quality control. HPLC (high performance liquid chromatography) & Gas chromatography are also important for the analysis. New Analytical Method Development: Method of analysis are being consistently developed, improved, validated, collaboratively studied and applied and also new analytical method has been developed. Chromatographic separations along with RP-HPLC and RP-UPLC method are considered as rapid stability indicating methods which depend on the samples to be analyzed. The chromatographic procedure is important for the systemic approach to LC-MS/MS method development. In most cases as desired separation can be achieved easily with only a few experiments. In other cases a considerable amount of experimentation may be needed. Reversed Phase Chromatography: Reversed phase packings such as C18, C8 are the most popular and most extensively used for Reversed Phase Chromatography . In addition to these C4, C2 and phenyl bonded are also available. Reversed phase sorbents usually involves conditioning with an organic solvent (e.g. methanol) followed by an aqueous solvent (e.g. water). Normal Phase Chromatography: Normal phase packings include silica, amino and alumina. Normal phase packing generally requires conditioning with a non polar solvent and elution is carried along with polar solvents. Compounds which have basic pH functional groups are retained by silica. However, polar compounds are irreversibly retained on a silica surface and in this case amino may be used. GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) Gas chromatography–mass spectrometry (GC-MS) is a method that combines the features of gas-liquid chromatography and mass spectrometry to identify different Raloxifene Hydrochloride salts within a test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and Method Validation of Raloxifene Hydrochloride and other drug products. The fundamental bioanalytical method validation parameters include precision and accuracy, sensitivity. Another innovative bioanalytical technique is solid phase extraction bioanalysis or SPE bioanalysis. There are many optimisation and validation studies have been carried out for the assessment of SPE for Raloxifene Hydrochloride. A sensitive, specific bioanalytical method provided by Bioanalytical Service Providers are critical for a reliable pharmacokinetic experiment. It involves Comparative assessment of bioanalytical method validation several different techniques such as Method Transfer, Partial Validation, and Cross Validation of bioanalytical methods and other Chromatographic techniques, especially, high performance liquid chromatography (HPLC) coupled with different detection systems like LC-MS/MS bioanalysis method development, validation, and sample analysis and RP-HPLC and RP-UPLC techniques are some of the preferred techniques, routinely employed in bioanalytical laboratories as compared to any other method of analysis owing to their precision, accuracy, reliability and applicability to large-scale analysis. The goal is to determine whether the obtained data for Raloxifene Hydrochloride are comparable. Cross validation assay and also include method transfer techniques consists of analysis of quality control samples (either spiked, incurred samples, or both), assayed under the different experimental conditions or different sites with validated methods of Raloxifene Hydrochloride, as appropriate. The same set of samples for Raloxifene Hydrochloride should be measured by both analytical sites or using the two different Bio-analytical methods. It is desirable that cross validation should be performed in advance of study samples being analyzed. It is recommended that the following rationale should be used in deciding how best to perform the cross validation. QbD (Quality By Design) development bioanalytical method is a novel method for the analysis of drug products extensively used in the industries. High performance liquid chromatography is one of the most accurate methods widely used for the quantitative as well as qualitative analysis of Raloxifene Hydrochloride and is used for determining Raloxifene Hydrochloride stability. Stability indicating HPLC methods are used to separate various drug related impurities that are formed during the synthesis or manufacture of Raloxifene Hydrochloride . This article discusses the strategies and issues regarding the development of stability indicating HPLC system for Raloxifene Hydrochloride given by Bioanalytical Service Providers. A number of key chromatographic factors were evaluated in order to optimize the detection of all potentially relevant degradants.For Example: Analytical QbD-based systematic bioanalytical HPLC method and HPLC-PDA for bioanalytical method along with RP-HPLC-PDA method . The method should be carefully examined for its ability to distinguish Raloxifene Hydrochloride from the impurities. Several drug products have been tested using analytical method and validation using HPLC/PDA. New chemical entities and drug products such as Raloxifene Hydrochloride must undergo forced degradation studies which would be helpful in developing and demonstrating the specificity of such stability indicating methods. At every stage of drug development practical recommendations are provided which will help to avoid failures. HPLC is a popular technique a