Evonik Evonik

X

Find Methanesulphonic acid manufacturers, exporters & distributors on PharmaCompass

PharmaCompass
API SUPPLIERS
API Suppliers

API Suppliers

US DMFs Filed

US DMFs Filed

CEP/COS Certifications

CEP/COS Certifications

0

JDMFs Filed

JDMFs Filed

0

Other Certificates

Other Certificates

0

Other Suppliers

Other Suppliers

0

API REF. PRICE (USD / KG)
4
INTERMEDIATES

0

DOSSIERS // FDF
USA (Orange Book)

USA (Orange Book)

0

Europe

Europe

0

Canada

Canada

0

Australia

Australia

0

South Africa

South Africa

0

Uploaded Dossiers

Uploaded Dossiers

0

GLOBAL SALES (USD Million)

U.S. Medicaid

0

Annual Reports

0

EXCIPIENTS

0

PATENTS & EXCLUSIVITIES

USFDA Orange Book Patents

0

USFDA Exclusivities

0

DIGITAL CONTENT

Blog #PharmaFlow

0

News

REF STANDARD

EDQM

0

USP

JP

0

Other Listed Suppliers

0

SERVICES

0

Methanesulfonic Acid API
Also known as: 75-75-2, Methylsulfonic acid, Methanesulphonic acid, Mesylate, Mesylic acid, Kyselina methansulfonova
Molecular Formula
CH4O3S
Molecular Weight
96.11  g/mol
InChI Key
AFVFQIVMOAPDHO-UHFFFAOYSA-N
FDA UNII
12EH9M7279

1 2D Structure

Methanesulfonic Acid API

2 Identification
2.1 Computed Descriptors
2.1.1 IUPAC Name
methanesulfonic acid
2.1.2 InChI
InChI=1S/CH4O3S/c1-5(2,3)4/h1H3,(H,2,3,4)
2.1.3 InChI Key
AFVFQIVMOAPDHO-UHFFFAOYSA-N
2.1.4 Canonical SMILES
CS(=O)(=O)O
2.2 Other Identifiers
2.2.1 UNII
12EH9M7279
2.3 Synonyms
2.3.1 MeSH Synonyms

1. Barium Methanesulfonate

2. Bms-480188

3. Methanesulfonate

4. Methanesulfonic Acid, Ammonia Salt

5. Methanesulfonic Acid, Chromium (2+) Salt

6. Methanesulfonic Acid, Chromium (3+) Salt

7. Methanesulfonic Acid, Cobalt (2+) Salt

8. Methanesulfonic Acid, Copper (2+) Salt

9. Methanesulfonic Acid, Iron (2+) Salt

10. Methanesulfonic Acid, Iron (3+)salt

11. Methanesulfonic Acid, Nickel (2+) Salt

12. Methanesulfonic Acid, Potassium Salt

13. Methanesulfonic Acid, Silver (1+) Salt

14. Methanesulfonic Acid, Sodium Salt

15. Methylsulfonate

16. Potassium Mesylate

17. Potassium Methanesulfonate

2.3.2 Depositor-Supplied Synonyms

1. 75-75-2

2. Methylsulfonic Acid

3. Methanesulphonic Acid

4. Mesylate

5. Mesylic Acid

6. Kyselina Methansulfonova

7. Sulfomethane

8. Methansulfonsaeure

9. Nsc 3718

10. Ch3so3h

11. Mfcd00007518

12. Chebi:27376

13. 22515-76-0

14. Msa

15. Nsc-3718

16. 12eh9m7279

17. Ammoniummethanesulfonate

18. Ccris 2783

19. Kyselina Methansulfonova [czech]

20. Hsdb 5004

21. Einecs 200-898-6

22. Brn 1446024

23. Methane Sulfonic Acid

24. Ai3-28532

25. Unii-12eh9m7279

26. Metanesulfonic Acid

27. Methansulfonic Acid

28. Msoh

29. Methansulphonic Acid

30. Methylsulphonic Acid

31. 03s

32. Methyl Sulfonic Acid

33. Methyl-sulfonic Acid

34. Methane-sulfonic Acid

35. Meso3h

36. Methane Sulphonic Acid

37. Methanesulphonic-acid-

38. Lactic Acid(dl)

39. Ammonium Methanesulphonate

40. Ch3so2oh

41. H3cso3h

42. Dsstox_cid_6422

43. Wln: Wsq1

44. Ec 200-898-6

45. Dsstox_rid_78109

46. Methane Sulfonic Acid 99%

47. Methanesulfonic Acid Solution

48. Dsstox_gsid_26422

49. 4-04-00-00010 (beilstein Handbook Reference)

50. Methanesulfonic Acid, 99.5%

51. Methanesulfonic Acid, Anhydrous

52. Chembl3039600

53. Dl-malicacidmonosodiumsalt

54. Dtxsid4026422

55. Methanesulfonic Acid [ii]

56. Methanesulfonic Acid [mi]

57. Methanesulfonic Acid, Hplc Grade

58. Nsc3718

59. Methanesulfonic Acid, >=99.0%

60. Methanesulfonic Acid [hsdb]

61. Tox21_201073

62. Stl264182

63. Methane Sulfonic Acid, 70% Solution

64. Akos009146947

65. At25153

66. J1.465f

67. Cas-75-75-2

68. Ncgc00248914-01

69. Ncgc00258626-01

70. Bp-12823

71. Db-075013

72. Ft-0628287

73. M0093

74. M2059

75. Methanesulfonic Acid, >=99.0%, Reagentplus(r)

76. Methanesulfonic Acid, For Hplc, >=99.5% (t)

77. A934985

78. Methanesulfonic Acid Solution, 70 Wt. % In H2o

79. Q414168

80. J-521696

81. Methanesulfonic Acid, Vetec(tm) Reagent Grade, 98%

82. F1908-0093

83. Z940713430

84. Methanesulfonic Acid Solution, 4 M (with 0.2% (w/v) Tryptamine)

85. Methanesulfonic Acid Concentrate, 0.1 M Ch3so3h In Water (0.1n), Eluent Concentrate For Ic

86. Methanesulfonic Acid, Pharmagrade, Manufactured Under Appropriate Gmp Controls For Pharma Or Biopharmaceutical Production

2.4 Create Date
2004-09-16
3 Chemical and Physical Properties
Molecular Weight 96.11 g/mol
Molecular Formula CH4O3S
XLogP3-0.9
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count3
Rotatable Bond Count0
Exact Mass95.98811516 g/mol
Monoisotopic Mass95.98811516 g/mol
Topological Polar Surface Area62.8 Ų
Heavy Atom Count5
Formal Charge0
Complexity92.6
Isotope Atom Count0
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Covalently Bonded Unit Count1
4 Pharmacology and Biochemistry
4.1 Absorption, Distribution and Excretion

Not absorbed /through skin/; excreted /unchanged/ in rats after 1 g/kg administered sc. /From table/

Patty, F. (ed.). Industrial Hygiene and Toxicology: Volume II: Toxicology. 2nd ed. New York: Interscience Publishers, 1963., p. 1844


4.2 Metabolism/Metabolites

Marinosulfonomonas methylotropha strain TR3 is a marine methylotroph that uses methanesulfonic acid (MSA) as a sole carbon and energy source. The genes from M. methylotropha strain TR3 encoding methanesulfonate monooxygenase, the enzyme responsible for the initial oxidation of MSA to formaldehyde and sulfite, were cloned and sequenced. They were located on two gene clusters on the chromosome of this bacterium. A 5.0-kbp HindIII fragment contained msmA, msmB, and msmC, encoding the large and small subunits of the hydroxylase component and the ferredoxin component, respectively, of the methanesulfonate monooxygenase, while a 6.5-kbp HindIII fragment contained duplicate copies of msmA and msmB, as well as msmD, encoding the reductase component of methanesulfonate. Both sets of msmA and msmB genes were virtually identical, and the derived msmA and msmB sequences of M. methylotropha strain TR3, compared with the corresponding hydroxylase from the terrestrial MSA utilizer Methylosulfonomonas methylovora strain M2 were found to be 82 and 69% identical. The msmA gene was investigated as a functional gene probe for detection of MSA-utilizing bacteria. PCR primers spanning a region of msmA which encoded a unique Rieske [2Fe-2S] binding region were designed. These primers were used to amplify the corresponding msmA genes from newly isolated Hyphomicrobium, Methylobacterium, and Pedomicrobium species that utilized MSA, from MSA enrichment cultures, and from DNA samples extracted directly from the environment. The high degree of identity of these msmA gene fragments, compared to msmA sequences from extant MSA utilizers, indicated the effectiveness of these PCR primers in molecular microbial ecology.

Baxter, NJ et al; Appl Environ Microbiol 68 (1) 289-96 (2002) https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11772638


4.3 Mechanism of Action

Methylating agents are potent carcinogens that are mutagenic and cytotoxic towards bacteria and mammalian cells. Their effects can be ascribed to an ability to modify DNA covalently. Pioneering studies of the chemical reactivity of methylating agents towards DNA components and their effectiveness as animal carcinogens identified O(6)-methylguanine (O(6)meG) as a potentially important DNA lesion. Subsequent analysis of the effects of methylating carcinogens in bacteria and cultured mammalian cells - including the discovery of the inducible adaptive response to alkylating agents in Escherichia coli - have defined the contributions of O(6)meG and other methylated DNA bases to the biological effects of these chemicals. More recently, the role of O(6)meG in killing mammalian cells has been revealed by the lethal interaction between persistent DNA O(6)meG and the mismatch repair pathway. Here, ...the results which led to the identification of the biological consequences of persistent DNA O(6)meG are reviewed. ... The possible consequences for a human cell of chronic exposure to low levels of a methylating agent /are considered/. Such exposure may increase the probability that the cell's mismatch repair pathway becomes inactive. Loss of mismatch repair predisposes the cell to mutation induction, not only through uncorrected replication errors but also by methylating agents and other mutagens. /Alkylating agents/

Bignami M et al Mutat Res 462 (2-3): 71-82 (2000). Available from, as of November 20, 2009: https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10767619


Ask Us for Pharmaceutical Supplier and Partner
Ask Us, Find A Supplier / Partner
No Commissions, No Strings Attached, Get Connected for FREE

What are you looking for?

How can we help you?

The request can't be empty

Please read our Privacy Policy carefully

You must agree to the privacy policy

The name can't be empty
The company can't be empty.
The email can't be empty Please enter a valid email.
The mobile can't be empty
Post Enquiry
POST ENQUIRY