

01/2005:1464

POLOXAMERS

Poloxamera

DEFINITION

Synthetic block copolymer of ethylene oxide and propylene oxide, represented by the following general formula:

Poloxamer type	Ethylene oxide units (a)	Propylene oxide units (b)	Content of oxyethylene (per cent)	Average molecular mass
124	10 - 15	18 - 23	44.8 - 48.6	2090 - 2360
188	75 - 85	25 - 30	79.9 - 83.7	7680 - 9510
237	60 - 68	35 - 40	70.5 - 74.3	6840 - 8830
338	137 - 146	42 - 47	81.4 - 84.9	12 700 - 17 400
407	95 - 105	54 - 60	71.5 - 74.9	9840 - 14 600

A suitable antioxidant may be added.

CHARACTERS

Appearance: colourless or almost colourless liquid (poloxamer 124); white or almost white, waxy powder, microbeads or flakes.

Solubility: very soluble in water and in alcohol, practically insoluble in light petroleum (50-70 $\,^{\circ}\mathrm{C}).$

mp: about 50 °C for poloxamers 188, 237, 338 and 407.

IDENTIFICATION

First identification: A, B.

Second identification: B, C.

A. Infrared absorption spectrophotometry (*2.2.24*). *Comparison*: chemical reference substance of the Ph. Eur. corresponding to the type of poloxamer to be examined.

- B. It complies with the test for average molecular mass (see Tests).
- C. It complies with the test for oxypropylene:oxyethylene ratio (see Tests).

TESTS

Solution S. Dissolve 10.0 g in *carbon dioxide-free water R* and dilute to 100 ml with the same solvent.

Appearance of solution. Solution S is not more intensely coloured than reference solution BY₇ (2.2.2, Method II).

pH (2.2.3): 5.0 to 7.5 for solution S.

Ethylene oxide, propylene oxide and dioxan. Head-space gas chromatography (*2.2.28*).

Ethylene oxide stock solution. Introduce 0.5 g of *ethylene oxide solution R5* in a vial and dilute to 50.0 ml with *dimethyl sulphoxide R1.* Mix carefully.

Ethylene oxide solution. Dilute 1.0 ml of ethylene oxide stock solution to 250 ml with *dimethyl sulphoxide R1*.

Propylene oxide stock solution. Introduce about 7 ml of *methylene chloride R* in a volumetric flask and add 0.500 g (*m*) of *propylene oxide R*. Dilute to 10.0 ml with *methylene chloride R*. Dilute 0.5 ml of this solution to 50.0 ml with *dimethyl sulphoxide R1*. Mix carefully. Calculate the exact concentration of propylene oxide in mg/ml using the following expression:

$$\frac{m \times 1000 \times 0.5}{10 \times 50}$$

Propylene oxide solution. Dilute 1.0 ml of propylene oxide stock solution to 50.0 ml with *dimethyl sulphoxide R1*. Calculate the exact concentration of propylene oxide in μ g/ml using the following expression:

$$\frac{C \times 1000 \times 1}{50}$$

C = concentration of the propylene oxide stock solution in mg/ml.

Dioxan solution. Introduce 0.100 g (m) of dioxan R in a flask and dilute to 50.0 ml with dimethyl sulphoxide R1. Dilute 2.50 ml of this solution to 100.0 ml with dimethyl sulphoxide R1.

Calculate the exact concentration of dioxan in $\mu g/ml$ using the following expression:

$$\frac{m \times 2.50 \times 1000 \times 1000}{50 \times 100}$$

Mixture solution. Dilute a mixture of 6.0 ml of ethylene oxide solution, 6.0 ml of propylene oxide solution and 2.5 ml of dioxan solution to 25.0 ml with *dimethyl sulphoxide R1*.

Test solution. To 1.000 g of the substance to be examined in a head-space vial, add 4.0 ml of *dimethyl sulphoxide R1* and close the vial immediately.

Reference solution. To 1.000 g of the substance to be examined in a head-space vial, add 2.0 ml of *dimethyl sulphoxide R1* and 2.0 ml of the mixture solution. Close the vial immediately.

Column:

- *material*: fused silica,
- size: l = 50 m, $\emptyset = 0.32 \text{ mm}$,
- stationary phase: poly(dimethyl)(diphenyl)siloxane R (film thickness 5 µm).

Carrier gas: helium for chromatography R.

Flow rate: 1.4 ml/min.

Static head-space conditions:

- equilibrium temperature: 110 °C,
- equilibration time: 30 min,
- transfer-line temperature: 140 °C,
- pressurisation time: 1 min,
- injection time: 0.05 min.

Temperature:

	Time	Temperature		
	(min)	(°C)		
	0 - 10	70		
Column	10 - 27	$70 \rightarrow 240$		
Injection port		250		
Detector		250		

Detection: flame ionisation.

Injection: inject a suitable volume of the gaseous phase, for example 1 ml.

Relative retention with reference to ethylene oxide (retention time = about 6 min): propylene oxide = about 1.3; methylene chloride = about 1.6; dioxan = about 3.0; dimethyl sulphoxide = about 3.7.

Limits:

- *ethylene oxide*: not more than half the area of the corresponding peak in the chromatogram obtained with the reference solution (1 ppm),
- *propylene oxide*: not more than half the area of the corresponding peak in the chromatogram obtained with the reference solution (5 ppm),
- *dioxan*: not more than half the area of the corresponding peak in the chromatogram obtained with the reference solution (10 ppm).

Average molecular mass. Weigh 15 g (m) of the substance to be examined into a 250 ml ground-glass-stoppered flask, add 25.0 ml of *phthalic anhydride solution* R and a few glass beads and swirl to dissolve. Boil gently under a reflux condenser for 1 h, allow to cool and add 2 quantities, each of 10 ml, of *pyridine* R, through the condenser. Add 10 ml of *water* R, mix and allow to stand for 10 min. Add 40.0 ml of 0.5 M sodium hydroxide and 0.5 ml of a 10 g/l solution of *phenolphthalein* R in *pyridine* R. Titrate with 0.5 M sodium hydroxide to a light pink endpoint that persists for 15 s and record the volume of sodium hydroxide used (S). Prepare a blank in the same manner but omitting the substance to be examined. Record the volume of sodium hydroxide used (B). Calculate the average molecular mass using the expression:

$$\frac{4000m}{B-S}$$

Oxypropylene:oxyethylene ratio. Nuclear magnetic resonance spectrometry (*2.2.33*).

Use a 100 g/l solution of the substance to be examined in *deuterated chloroform* R. Record the average area of the doublet appearing at about 1.08 ppm due to the methyl groups of the oxypropylene units (A_1) and the average area of the composite band from 3.2 ppm to 3.8 ppm due to CH₂O groups of both the oxyethylene and oxypropylene units and the CHO groups of the oxypropylene units (A_2) with reference to the internal standard.

Calculate the percentage of oxyethylene, by weight, in the sample being examined using the following expression:

$$\frac{3300\alpha}{33\alpha + 58}$$

where $\alpha = \frac{A_2}{A_1} - 1$

Water (2.5.12): maximum 1.0 per cent, determined on 1.000 g.

Total ash (*2.4.16*): maximum 0.4 per cent, determined on 1.0 g.

STORAGE

In an airtight container.

- LABELLING

The label states:

- the type of poloxamer,
- the name and concentration of any added antioxidant.

01/2005:0733

POLYACRYLATE DISPERSION 30 PER CENT

Polyacrylatis dispersio 30 per centum

DEFINITION

Polyacrylate dispersion 30 per cent is a dispersion in water of a copolymer of ethyl acrylate and methyl methacrylate having a mean relative molecular mass of about 800 000. It may contain a suitable emulsifier. The residue on evaporation is not less than 28.5 per cent m/m and not more than 31.5 per cent m/m.

CHARACTERS

An opaque, white, slightly viscous liquid, miscible with water, soluble in acetone, in ethanol and in 2-propanol.

IDENTIFICATION

First identification: A.

Second identification: B, C, D, E.

- A. Examine by infrared absorption spectrophotometry (2.2.24), comparing with the *Ph. Eur. reference spectrum of polyacrylate.*
- B. To 1 g add 5 ml of *water R* and mix; the mixture remains opaque. Take three 1 g portions and mix separately with 5 g each of *ethanol R*, *acetone R* and *2-propanol R*. Transparent solutions are obtained.
- C. To 1 g add 10 ml of 0.1 *M* sodium hydroxide. The mixture remains opaque.
- D. It complies with the test for appearance of a film (see Tests).
- E. Dry 4 g in a Petri dish at 60 °C in an oven for 4 h and transfer the resulting clear film to a small test-tube (100 mm \times 12 mm). Heat over a flame and collect the fumes that evolve in a second test-tube held over the mouth of the first tube. The condensate gives the reaction of esters (2.3.1).

TESTS

Relative density (2.2.5): 1.037 to 1.047.

Apparent viscosity. Determine the viscosity (2.2.10) using a rotating viscometer at 20 °C. At a shear rate of 10 s⁻¹, the apparent viscosity is not more than 50 mPa·s.

Appearance of a film. Pour 1 ml on a glass plate and allow to dry. A clear elastic film is formed.

Particulate matter. Filter 100.0 g through a tared stainless steel sieve (90). Rinse with *water* R until a clear filtrate is obtained and dry at 80 °C to constant mass. The mass of the residue is not more than 0.500 g.

Residual monomers. Not more than 100 ppm, determined by liquid chromatography (*2.2.29*).

Test solution. Dissolve 1.00 g of the substance to be examined in *tetrahydrofuran* R and dilute to 50.0 ml with the same solvent. To 5.0 ml of a 35 g/l solution of *sodium perchlorate* R add 10.0 ml of the solution dropwise