### Sophisticated Molecules for the Pharmaceutical Industry



### Pharma: Business Results



#### **BUSINESS PHARMA**









### Pharma: Business Results

Offices in **20 countries** across South America, Europe and Asia.

Present in 87 countries around the world

#### SALES BY GEOGRAPHICAL AREA

#### PHARMA PEOPLE





### **Industrial Business Operations**

#### Cadempino

76 manufectured

third parties and generics manufacturers of carbapenents

#### Vicenza

65 menofectures 280 sky demonstrate the site's extraordinary complexity

#### Sao Paolo

produces

#### Haikou

million units manufactured

#### **Virtual Plant**

2 million units manufactured

units sold (including Xadago⊖ for 600K boxes)

#### 138 million in pintes sales

including Xadago® and Fluimuel® antidote

4 MANUFACTURING PLANTS: VICENZA (ITALY), CADEMPINO (SWITZERLAND), HAIKOU (CHINA) AND SÃO PAULO (BRAZIL) SUPPLY PRODUCTS AND SERVICES TO 87 COUNTRIES WORLDWIDE

IN 2018 INVESTMENTS FOR APPROXIMATELY 18 MILLION EUROS FOR NEW FACILITIES AND UPGRADE OF PROCESSES AND TECHNOLOGIES

HIGHER AND GROWING SYNERGY AMONG THE DIFFERENT GROUP PLANTS



### **Zambon Group**





HIGH-SCHOOL

GRADUATES

32%







### A SOLID DEVELOPMENT PLAN FOR CHEMICAL BUSINESS

Zach is the chemical division of the Zambon Group and it focuses on producing Active Pharmaceutical Ingredients (APIs) and advanced intermediates for the pharmaceutical industry.



6 REVENUES BY SEGMENT

SALES

CUSTOM

SYNTHESIS \_ 54%



# Zach: IN FEW WORDS

- FDA inspected manufacturing site
- A strong track records with different Authorities
- 177 people
- R&D team on site **18** people
- A Kilolab plant
- A GMP pilot plant
- A broad range of technologies
- Spray-drying of APIs & Low Endotoxin Excipients
- A flexible manufactruing facility
- **OEL ≥ 1µg/m3** (max. OEB 4)





# Zach: IN FEW WORDS

- REVENUES (2018): 33 MM€
- HEADCOUNT (2018): 177 people

#### • CAPEX (2017): 5 MM€

Filter-dryer of 4m<sup>2</sup> in Hastelloy in a new extension building Pin-Mill

New HPAPI Lab

A Lasentech probe

CAPEX (2018): 2,7 MM€

Warehouse (Temperature Monitoring, bar code stock management) R&D Lab revamping Operational investments



# Zach: organization



### SHIFTS FOR PRODUCTION

24 hours/day, 6 days/week

can be expended to shifts to adapt on the demand

Production 68 11 Warehouse/scheduling **Technical service** 22 Analytical Department 31 QA/RA 8 EHS 4 R&D 18 Administration 15



# **Our 3 Legs Business Model**



# Plan is to grow the custom manufacturing activity together with the captive business



11

## **Pedigree of Our Products**





12

# QA: HIGH QUALITY STANDARDS

| FDA                              | ANSM                                      | PMDA                                                        | -           | KOREAN<br>FDA | CUSTOMER<br>AUDITS    |
|----------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------|---------------|-----------------------|
| Last<br>Inspection<br>in 10/2018 | <ul> <li>Local<br/>Authorities</li> </ul> | <ul> <li>Japanese<br/>Autorithies</li> <li>2006+</li> </ul> | 111         | • 2003 & 2011 | 10 to 15<br>Audit per |
| • 1 Form 483<br>(2 observations) | • 2017                                    | Regular<br>Paper<br>Inspection                              | 2003 & 2011 | Year          |                       |



KILOLAB PILOT PLANT PRODUCTION CAPACITY

**FINISHING UNIT** 

16



# **Our Kilolab Plant**

**cGMP KILOLAB** to support early-phase clinical studies

### **2 REACTION UNITS** equipped with:

**15L** Glass lined reactor working at -90°C to 160°C

**30L** Glass lined reactor working at -40°C to 160°C

1 GL filter-dryer of 0,07 m2





# **Our Pilot Plant**

- 11 reactors with a total capacity of 5100 L
- 5 glass lined reactors (100 to 600 L)
- 6 stainless steel reactors (50 to 1,000 L)
- CRYOGENIC unit stainless steel (70L)
- Temperature range (from -80° C to +150° C)
- **2 HYDROGENATION** reactors (400 L & 1000 L, 5 bar)
- 3 filter dryers (0.2 to 0.7 m<sup>2</sup>), 2 in clean rooms
- Wiped film evaporator





## Production Capacity

| Capacities            | Glass-lined - Coated | SS | Notes                       |  |  |  |
|-----------------------|----------------------|----|-----------------------------|--|--|--|
| Reactors              |                      |    |                             |  |  |  |
| 1000 to 2000 L        | //1///               | 3  | 1 cryogenic (-90°C)         |  |  |  |
| 2000 to 3000 L        | 4                    | 2  |                             |  |  |  |
| 3000 to 4000 L        | 3                    | 4  | 3 autoclaves (up to 12 bar) |  |  |  |
| 4000 to 6000 L        | 0                    | 1  |                             |  |  |  |
| 6000 to 8000 L        | 4                    | 0  | •                           |  |  |  |
| 8000 to 10000 L       | 1                    | 1  |                             |  |  |  |
| Isolation Equipments  |                      |    |                             |  |  |  |
| Filter-dryer 2500     |                      | 1  |                             |  |  |  |
| Filter-dryer 3000     |                      | 4  |                             |  |  |  |
| Filter-dryer 4000     |                      | 1  | ISO 8                       |  |  |  |
| Centrifuge 1100       | 1                    |    | ISO 8                       |  |  |  |
| Centrifuge1300        | 1                    |    |                             |  |  |  |
| Press-filter          |                      | 2  |                             |  |  |  |
| Wiped Film Evaporator |                      | 1  |                             |  |  |  |



17

# **Finishing Unit**

- Clean rooms dedicated to drying, particle size reduction and packaging of API's
- ISO 8 clean rooms & ISO7 laminar flow
- On site production of purified and Low Pirogen water

#### 11 Dryers:

- Filter dryers
- o GL tumble dryer
- S.S. pan dryer
- 2 Blenders
- 3 Hammer Mills (1 blanketed with N2)
   1 Pin Mill / 1 Micronizer
- 2 Spray Dryers Ultrafiltration & Nanofiltration Units
- 1 Freeze Dryer (bulk)



18





## **R&D** Team





### **R&D** Team









### PROCESS CHEMISTRY

- Process chemistry labs (100 ml – 10 lt glass reactors)
- **Ozonolysis lab** (batch and continuous flow)
- Hydrogenation lab (screening and preparations)
- Kilo-lab (15/30 lt glass reactors; - 80°- 160°C)
- **HP API Lab** (OEB5, OEL > 0.1 μg/m<sup>3</sup>)





### PURIFICATION / SEPARATION

WFE (Wiped Film Evaporation)

Automated **flash** chromatography (Biotage Isolera®)

#### **HYDROGENATION**

3 working cells, low/high P 100-2000 ml reactors

1 cell parallel screening system (Argonaut Endeavor)

Assassas

#### **OZONOLYSIS**

#### Ozonizers:

- **Ozonia CFS1** ( $O_2$  feed, 12%  $O_3$ )
- Ozonia CFS3 (air feed, up to 5% O<sub>3</sub>)
   IMM®FFMR
   (Lab scale: 10 g/hr, MLab: 100 g/hr)



### PROCESS SAFETY LAB

- Mid-High temp RC1 (MT)
- Low temp RC1 (HEL)
- **DSC** (TA instruments)
- **TGA** (TA instruments)
- HEL Phitec II ARC





#### ROUTINE ANALYSIS

- 8 HPLC
  - (HPLC: UV/CAD/RID)
  - (UPLC: UV/CAD/ELSD)
- 3 GC (HP)
- 1 HS-GC
- Titration, KF systems



#### PAT

- **FTIR** probe (lab/pilot/industrial applications)
- **RAMAN** probes (lab batch, MR and ATEX)
- FBRM probe (ATEX)



#### STRUCTURAL CHARACTERIZATION

- 1 HPLC-MS (ESI-APCI/Ion Trap)
- 1 GC-MS (EI-CI/quadrupole)
  - 1 Bruker 400 MHz NMR spectrometer







### **Solid state engineering and characterization**

#### **PARTICLE ENGINEERING**

Customized glass reactors (scale-down of industrial reactors)





- GFD<sup>®</sup> Lab-scale filter-dryer and centrifuge .
- ATEX FBRM<sup>®</sup> probe (Mettler Toledo) ×.
- Spray-dryer Buchi B-290 A (aq./org. slns)











#### **POWDER CHARACTERIZATION**

- **RAMAN** probe for powders
- **DSC** (TA instruments)
- Access to XRPD, SS-NMR, SEM (Angers, Rouen)
- Malvern/Sympatec for PSD (Zach Avrillé QC) Powder flowability measurement (Copley):
  - Flodex
  - Shear cell
  - Static angle of repose













### HP API LAB

- HPAPI LAB1: 2 working hoods, 1 washing hood
- **HPAPI LAB2**: 1 flexible working hood designed to host spray-dryer
  - Separate airlock entry for users and materials
  - Trained personnel
- Tyvek suite
- Specific samples handling and labeling
- Cleaning and decontamination SOPs
- Waste handling
- Performance down to **OEL = 0.1**  $\mu$ g/m<sup>3</sup> (OEB5)







### **Project management 1/2**





### **Project management 2/2**











### **Core Chemistry and Technologies 1/2**

|                                |                            |                                                          | <b>BATCH SIZE</b> | QTY/Y        |
|--------------------------------|----------------------------|----------------------------------------------------------|-------------------|--------------|
| C=C, C=O, C-O<br>REDUCTION     | Catalytic H <sub>2</sub>   | Pd/C, Pt/C, PtO <sub>2</sub> , Ir/C                      | 100s kg           | 10s MT       |
|                                | Asymmetric H <sub>2</sub>  | RhL*, RuL*                                               | 10s kg            | 10s kg       |
|                                | Hydride reduction          | LAH (pwdr, sln), DIBAL (sln), TtBuO-LAH (sln), NaBH $_4$ | 10s-100s kg       | 1-100 MT     |
|                                | C=O reduction              | BH <sub>3</sub> /THF                                     | 100s kg           | 1s MT        |
|                                | CBS reduction              | (R)-DPP+BH <sub>3</sub> /THF                             | 10s kg            | 1s MT        |
|                                | C-O cleavage               | TES, TIBAL (pure, sln)                                   | 100s kg           | 1s MT        |
|                                |                            |                                                          |                   |              |
| OXIYDATION                     | Ozonolysis                 | Batch SS 50/1500 lt, cryo                                | 100s kg           | 1s MT        |
|                                | Asymmetric oxdn            | Sharpless, -15°C                                         | 100s kg           | 1s MT        |
|                                | Periodate,<br>Permanganate | NalO <sub>4</sub> , 75°C; KMnO <sub>4</sub> , 25°C       | 10s kg            | 100s kg      |
|                                |                            |                                                          |                   |              |
|                                | Lithiations                | RLi, LDA, Li in NH <sub>3(I)</sub>                       | 100s kg           | Up to 100 MT |
| METALATION,<br>ALKYLATION, C-C | DMS, DES alkylation        | r.t., heat                                               | 1 MT              | Up to 100 MT |
|                                | Eschweiler-Clarke          | HCOOH/HCHO                                               | 1 MT              | Up to 100 MT |
|                                | Cyanation                  | KCN, NaCN                                                | 100s kg           | 10s MT       |
|                                | Grignard                   | Mg/ether, AlkMgCl/ether; VinylMgCl, -80°C                | 100s kg           | 1-5 MT       |
|                                | Pd-cat coupling            | Heck, Suzuki                                             | 100s kg           | 1 MT         |



### **Core Chemistry and Technologies 2/2**

|               |                                | FTT / P                                                    | BATCH SIZE | QTY/Y   |
|---------------|--------------------------------|------------------------------------------------------------|------------|---------|
| PRODUCT CLASS | Steroids (8 APIs/reg. interm.) | $OEL \ge 1 \mu g/m^3$                                      | 100s kg    | 1-10 MT |
|               | Excipients (8 specialties)     | $\beta$ , $\gamma$ -CD based specialties                   | 100s kg    | 10s MT  |
|               |                                |                                                            |            |         |
|               | Distillation                   | Rectification column, 11 theoretical plates, 170°C         | 100s kg    | 10s MT  |
|               | WFE                            | Pilot: 1-10 kg/hr; <5 mbar; industrial: 5-50 kg/hr; 1 mbar | 100s kg    | 10s MT  |
| PURIFICATION  | Crystallization/Resolution     |                                                            | 100s kg    | 100s kg |
| TECHNIQUES    | Ultrafiltration                | Cut off ≈1000 Da                                           | 100s kg    | 10s MT  |
|               | Nanofiltration                 | Cut off ≈300 Da                                            | 100s kg    | <10MT   |
|               | Electrodialysis                |                                                            | 10s kg     | 100s kg |
|               |                                |                                                            |            |         |
|               | Spherical agglomeration        | Particle downsizing technology                             | 10s kg     | 100s kg |
| DRYING        | Milling, Micronization         | Hammermill, pinmill, jet mill                              | 10s kg     | 10s MT  |
|               | Spray-drying                   | PSD1 (aq/org sln), PSD2 (aq sln)…(PSD4: aq/org sln)        | 1-500 kg   | 10s MT  |
|               | Freeze-drying                  | Bulk: 50 m <sup>2</sup>                                    | 100s kg    | 1s MT   |



# Spray-Dryer (PSD1)

#### A new Spray dryer for SOLVENT SOLUTIONS:

- Drying gas (N2) rate 100 kg/h
- Inlet temperature ≤ 250 °C
- Spray: bi-fluid nozzle
- ATEX design

#### CAPACITY IN OPERATION:

- Flow of SD product : 1 3 kg/h
- Annual capacity : > 2 000 kg

■ ENVIRONMENT : handling of products OEL ≥ 1µg/m3

#### FEEDING:

- Disposable containment to load solid active RM
- Fed with low pyrogen water production unit

#### FINISHING CONDITIONS:

- State of the art containment for packaging
- ISO 8 room
- Possible option : sieving





# **Spray-Dryer (PSD2)**



- Drying gas (air) rate: 360 kg/h
- Inlet temperature ≤ 250 °C
- Spray: High Pressure nozzle / bi fluid nozzle
- Sanitary design (+ steam decontamination)

#### **CAPACITY IN OPERATION:**

- FLOW of SD product: 7 to 10 kg/h
- Annual capacity :20MT

#### □ ENVIRONMENT handling of products OEL $\geq$ 1 µg/m3

#### FEEDING

- Disposable containment to load solid active RM
- Fed with low pyrogen water produced on-site

#### **FINISHING CONDITIONS**

- State of the art containment for packaging
- ISO 7 laminar flow
- Possible option : sieving



### **Hydride Reduction**



# **Catalytic asymmetric hydrogenation**



Case study 2: Synthesis of Candoxatril, OPRD 2001, 5, 438





# **Catalytic Asymmetric Hydrogenation**





### **Proprietary technology to chiral aimes**

Powerful catalytic technology to convert a ketone into the corresponding enamide, via the oxime, based on catalytic asymmetric hydrogenation





### **CBS asymmetric C=O reduction**





### **TIBAL-promoted demethylation**



TIBAL: TriisoButyl Aluminium Hydride Industrial quantities (1 MT of TIBAL per batch)



### Cryogenic Lithiation (ALKLI/BH<sub>3</sub> REDUCTION)

- Patented chemistry
- industrial manufactures on MT scale performed (1500L cryogenic reactor)
- continuous flow process in micro-reactors at lab scale (under development)



to continuous flow/MR



### Cryogenic Lithiation (Schlosser base)





### **Grignard + cryogenic lithiation (LDA)**

Synthesis of a RSM



- Handling of (BOC)<sub>2</sub>O as a concentrated toluene solution
- Batch size 5 25 kg



### **Ozonolysis - BATCH + CONTINUOUS FLOW IN FFMR**





### **Ozonolysis** - **EXAMPLES**

LOW TEMPERATURE PROCESS

applicable to hundred of kg scale

Tunable end product by choice of reductive quench:
 ozonide to alcohol (NaBH<sub>4</sub>)

- ozonide to aldehyde (H<sub>2</sub> Metal/C, (MeO)<sub>3</sub>P, Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>)

>10 years EXPERIENCE in development of safe scalable in-batch processes

2015: implementation of continuous ozonolysis in FFMR





### **Sharpless asymmetric epoxydation**

Application of the Sharpless' asymmetric epoxydation protocol to (R)-(+)-glycidol synthesis



Sharpless' allylic alcohol epoxidation

i. Ti(iPrO)<sub>4</sub>, D-(-)-DIPT, CHP, -15°C ii. 4 distillation cycles



on → TrO

(R)-(+)-glycidol

Industrial manufacture on multi-tons scale Management of safety risks due to polymerization Complex purification through distillation



### **DMS, Eschweiler-Clarke methylation**





### Cyanation

.

#### ACETONCYANHYDRINE/NAH PROCESS replaced by direct NaCN cyanation











### Suzuki coupling





### **PAT at industrial scale**



