Small-Molecule Drug Target Identification/Deconvolution Technologies

Case-Studies

Advancing Technologies and Applications of Proteome Analysis

Shantani Target ID Technology Tool Box

Target Deconvolution is not Trivial = A single Tool / Technology May Not necessarily solve the problem

Our Focus = Target ID

We Utilize Several Proprietary and Generic Technologies for <u>**Right Target**</u>

1) UPT = Unique Polymer Technology, 2) SCLS = Subcellular Location Specific Target Capture Technology, 3) COMP = 'in-silico' target ID workflows, 4) TBB = Traditional Bead/Biotinylated Molecule Based Method, 5) TPP = Thermal Proteome Profiling

Case Study # 1: A Drug Discovery Program from a Seattle, USA based Organization

Scenario

- Phenotypically Screened 'Hit' compound, <u>Target not known</u>, 'Hit' can not be rationally optimized
- For Target ID Typical bead/biotinylation based affinity chromatography can not be performed because <u>Molecule is not</u> <u>easy to derivatize</u>

- Shantani's Proprietary Unique Polymer Technology that can immobilize underivatized molecule for affinity chromatography
- Eventually Target(s) that can be linked to observed phenotype were identified

Unique Polymer Technology (UPT)

excess of free Bait-Moleucle

Typical Target ID Workflow

<u>Uniqueness</u>

- 1. Molecule Derivatization not needed.
- 2. Target Identification can be completed in 2-3 weeks.

Working Principle

Molecule transiently get immobilized on Specifically Engineered Polymeric Surface through multiple non-covalent interaction with Polymer. Thus formed molecule specific affinity matrix is used in capturing the target from cell-lysates.

Protein Precipitation and Removal of Small Molecule

Case Study # 2: A Large Indian Corporate looking for new regenerative medicine

Scenario

- Bioactive compound, at lower concentration induces proliferation of cells but at 20X concentration induced cell death <u>Target not known/MOA not</u> <u>clear</u> 'Hit' can not be rationally optimized
- Some structure-activity relationship data available but no path forward.

- Shantani was consulted for Project
- Shantani used traditional bead based (TBB) methods and identified the targets
- 'in-silico' target validation was performed and targets were rank ordered based on predicted Kd values
- Identified targets with predicted lower affinity were linked with cell-death and higher affinity (strong affinity) with proliferation

Traditional Bead Based Methodology (TBB)

<u>Uniqueness</u>

Can identify targets having broad range of affinity with molecule (Kd ~ nanomolar to micromolar)

Working Principle

Molecules are immobilized on the solid support to prepare molecule specific affinity matrix. Affinity chromatography is carried out from relevant cell-lysate to capture the target proteins on solid support. Later captured proteins are identified using massspectrometry and deconvoluted.

Immobilize Test Compounds On Solid Support / Biotin Apply Protein Source data Solid Support Concerned Solid Solid

Typical Target ID Workflow

TARGET

Case # 2:

Case Study # 3: A European SME

Scenario

- Phenotypically Screened 'Hit' compound, <u>Target not known</u>, 'Hit' can not be rationally optimized
- For Target ID Typical bead/biotinylation based affinity chromatography can not be performed because <u>a slight change</u> <u>in molecular structure looses the activity of the compound</u>

- Shantani's Proprietary Unique Polymer Technology that can immobilize underivatized molecule for affinity chromatography
- Eventually Target(s) that can be linked to observed phenotype were identified

\mathbf{C}	Ш	0
	Π	· .
Case	Π	J .

Client	Shantani (1 week)		Shantani (1 week)	Shantani (1 week)	
'Hit' compound	Preparation of affinit matrix using UPT	ty	Affinity Chromatography and Target ID	Target Deconvolu	ıtion
lysate trol-Matrix Solnt,	Ipetition ct Load		Total Proteins Identified = 253	Deconvoluted S Target = 5	pecific
	Con Con		Protein Class / Name	Specifi	city Ratio
		Methyl Transferase			1
		Fibronectin Binding Protein			1
		Mito	chondrial Transport Protein		1
		GTPa	ase activating Protein		1
		Adap	oter Protein for T-Cell Signall	ing	1
			Eventual Value and '	GO' Decision	
Typical Enrichment in Direct Load Ex Silver Stain F	of the Target periment –	et was	Identified a Novel Epig validated by client using over	genetic Target expression and Bir	nding Studies
Juver Julii I	TOTIL				

www.shantani.com

Case Study # 4: A Internal Study

Scenario

- Molecule Bisindolylmaleimide-III (Bis-III) interacts with GSK3- β and induce apoptosis
- GSK3-β is present both in cytoplasm and nucleus. For clarity on MOA and newer compound design location of target is needed
- SAR of the Bis-III molecule is well-established

- Shantani's Proprietary subcellular location specific target capturing target methodology
- Target location was identified and for conformation target was captured from specific sub-cellular location

Subcellular Location Specific Target Identification Technology (SCLS)

<u>Uniqueness</u>

- 1. Very low false positive identification rate ~20%
- 2. Can identify targets in subcellular location specific manner in a live-cell set-up

Working Principle

- 1) Bait –molecules are coupled to proprietary sub-cellular location specific probes
- 2) These probes in separate experiments drag the molecule in different specific sub-cellular locations and functional activity of the molecule is measured
- 3) Sub-cellular location that shows maximum activity is chosen as 'target-rich' compartment and target captures experiments are performed from 'target-rich' locations

Case # 4: Sub-cellular Location Specific Functional Activity of Bis-III Probes

Case # 4. Capture of Target from Nuclear Fractions

Eventual Value and 'GO' Decision

Establishing sub-cellular location of the target clarified the MOA and new compound design included the additional parameters that molecule should target nucleus

Case Study # 5 Identification of Target Using Computational Approaches

Scenario

- Several Computational Approaches are available for identifying the Targets of Small Molecule that utilizes structural information of the molecule and compares it with the historical database (similar structure + Target)
- These approaches generate a long list of targets (most of them are false positive) and a few target for validation can not be prioritized

Shantani's Solution

• Shantani's Proprietary computational approach identify a few but the rightful target

Case # 5: Deconvolution of Targets of a Few Known Small Molecules using Shantani's COMP workflow

NH2		# of Target Identified	# of Actual Target (Kd < 500 nm)	Success Ratio (Total / Actual Target)
	Algorithm-1	26	1	4%
	Algorithm-2	4	2	50%
J-S-o	Algorithm-3	16	2	13%
o H	Shantani-Algorithm	2	1	50%
Bisindolylmaleimide-III			$(\text{Identified ranget = PKC-}\alpha)$	

BMS-345541

	# of Target Identified	# of Actual Target (Kd < 500 nm)	Success Ratio (Total / Actual Target)
Algorithm-1	17	1	6%
Algorithm-2	8	2	25%
Algorithm-3	19	2	11%
Shantani-Algorithm	2	1 (Identified Target =IKK-β)	50%

Eventual Value and 'GO' Decision

Shantani's COMP workflow allows identification of a few but rightful targets

Connect for further discussions

Saba Naaz Siddique saba@shantani.com Phone: +91-20-64103918

http://www.shantani.com

Advancing Technologies and Applications of Proteome Analysis

