

ABOUT US

The company maintain high standard of quality in compliance with GMP and GLP for its products manufactured at our premises and Meet the regulatory requirement of our customer.

FACILITIES & INFRASTRUCTURE

- Facility is located at Surat around 250 kms from Mumbai, easily accessible by Air, Road, and Rail and spread over land area of 1000 sq. meters.
- We have 35 KL/ Day production capacity in volume.
- Facilities are fully licensed as per Indian Factory Act
- FDA and GMP approval facility
- We have 1 kl to 5 kl capacity of total 12 reactors.
- We have FDA approved Quality control lab and powder processing area.

FACILITIES & INFRASTRUCTURE

- Membership of CETP with Globe Enviro Care LTD (GECL).
- Membership of TSDF with Bharuch Enviro Infrastructure Limited (BEIL) and Saurashtra Enviro Projects Private Limited-Kutch (DETOX GROUP)
- We have International Standards Organization Certificates.

ISO 45001

ISO 14001

ISO 9001

LETS SEE OVERALL PLANT

MANUFACTURING AREA

INTERMEDIATE LIST

SR NO	INTERMEDIATE NAME	CAS NO
1	(±)-3-(Carbamoyl methyl) -5- methyl hexanoic acid	181289-15-6
2	(R)–(–)–3–(Carbamoyl methyl) –5–methyl hexanoic acid	181289-33-8
3	7–(4–chlorobutoxy)–3,4–dihydroquinolin–2–one	120004-79-7
4	1–(2,3–dichlorophenyl) piperazine hydrochloride	119532-26-2
5	Methyl pyridine–3–carboxylate	5470-70-2
6	N-(2-Hydroxyethyl)pyridine-3-carboxamide	6265-73-2
7	11-chloro-10,11-dihydrodibenzo $[b,f][1,4]$ thiazepine	13745-86-3
8	2,7-Dichloro-alpha-[(dibutylamino)methyl]-9H-fluorene-4-methanol	69759-61-1
9	2-(2,7-DICHLORO-9H-FLUORENYL-4-YL)OXIRANE	53221-14-0
10	Decahydro-3,6,9-trimethyl-3,12-epoxy-12 <i>H</i> -pyrano[4,3- <i>j</i>]-1,2-benzodioxepin-10-ol	71939-50-9
11	7-Hydroxy-3,4-dihydro-2(1H)-Quinolinone	22246-18-0

LIST OF COMMERCIALIZE PRODUCT

SR NO	PRODUCT NAME	CAS NO
1	ARIPIPRAZOLE	129722-12-9
2	QUETIAPINE FUMARATE	111974-72-2
3	LUMEFANTRINE	82186-77-4
4	ARTEMETHER	71963-77-4
5	CLOMIPRAMINE HYDROCHLORIDE	17321-77-6
6	ARTEETHER	75887-54-6
7	BENFOTIAMINE	22457-89-2
8	NIACIN	59-67-6
9	RIBOFLAVIN	83-88-5
10	DIACEREIN	13739-02-1
11	PREGABALIN	148553-50-8
12	BISOPROLOL FUMARATE	104344-23-2

LIST OF PLANT MACHINERY

1	SR NO	Name Of The Machine	Quantity /NOs.
	1	5KL Glass lined Reactor with column, condenser & receiver.	2 No
	2	3KL SS-316 Reactor with column, condenser & receiver.	3 No
	3	1.6 KL Glass lined Reactor with column, condenser & receiver	1 No
	4	1KL SS-316 Reactor with column, condenser & receiver.	3 No
	5	5 KL SS-316 Reactor with column, condenser & receiver.	2 No
ı	6	500 L SS-316 Reactor with column, condenser & receiver.	1 No
	7	10KL HDPE Quencher with gear, motor, stirrer and cooling coil.	2 No
-	8	SS 316 – CF – 48"(GMP Model)	2 No
	9	MSRL – CF –48"	2 No
	10	SS-316 Centrifuge -36"	1 No
	1	1000 Kg/Hr. IBR tube type Horizontal Boiler	1 No
			f

LIST OF PLANT MACHINERY

SR NO	Name Of The Machine	Quantity /NOs.
11	15 TR chilling plant with complete accessories	1 No
12	40 TR chilling plant with complete accessories	1 No
13	Cooling Tower (40 TR)	1 No
14	Cooling Tower (150 TR)	1 No
15	Tray Drier – 48 Trays	1 Set
16	Multi Mill(GMP Model)	1 No
17	Fluid Bed Dryer (GMP Model)	1 No
18	Sparkler Filter (GMP Model)	2 No
19	20 KL. MS storage tank (20 mm thick approx) with vertical	2NO
	pump	
20	20KL HDPE storage tank (Syntex)	2 No
21	Water jet ejector system with pump and complete accessories	3 Set
22	Compressor 5 HP	1 No
23	Sifter	1 No

LIST OF ANALYTICAL INSTRUMENT

-		The state of the s	
	P		
			18.8
	-		1

SR NO	Name Of Instrument	Quantity /NOs.
1	Melting point Apparatus	1 NOS
2	Hot Air Oven	1 NOS
3	UV chamber	1 NOS
4	Analytical Weight Balance	1 NOS
5	Karl Fisher Moisture Content	1 NOS
6	pH Meter	1 NOS
7	Magnetic stirrer with Hot Plate	1 NOS
8	High Performance Liquid Chromatography	1 NOS
9	Muffle furnace	1 NOS
10	UV-Vis Spectrophotometer	1 NOS
11	Conductivity meter	1 NOS
12	Stability Chamber	1 NOS

OUR VALUABLE CUSTOMER

- MANKIND PHARMA
- NAVIN FLOURINE INTERNATIONAL
- AMI ORGANIC LTD
- TORRENT PHARMA
- PARAGON ORGANICS
- R L FINE CHEM
 - SUPRIYA LIFE SCIENCE LTD

CONTACT DETAIL

CONTACT NO: 8200483664

EMAIL ID: believe.pharma() (@gmail.com

WEB: www.believepharma.in